OCXO (Oven Controlled Crystal Oscillators) OC31T5A; OC31T5S Series

Mercury OC31T is $36.2 \times 27.2 \mathrm{~mm} 5$ pin solder sealed metal pacakge with $25.4 \times 17.8 \mathrm{~mm}$ pin-to-pin spacing high stability low aging OCXO. Besides standard AT cut crystal, users can also choose SC cut crystal for better performance. 50 ohm load sine output is available as 0C31E series.

Output Wave Form			HCMOS square wave. Wave form code is "T"			
Frequency Range			$1.0 \mathrm{MHz} \sim 100.0 \mathrm{MHz}$			
Type of Crystal Cut Used			AT-cut. Use "A" for crystal code or SC-cut: use "S" for crystal code. Please refer to technical note TN031 for SC and AT-cut crystal comparison			
Supply Voltage (Vcc)			$+5.0 \mathrm{~V}_{\text {D. }} \pm 5 \%$ (voltage code is " 5 ")			
Initial Calibration Tolerance			$\pm 0.05 \mathrm{ppm}$ max. at time of shipment; Vcon $=+2.5 \mathrm{~V}$, at $+25^{\circ} \mathrm{C}$			
	Operating Temperature Range (custom spec. on request)		AT-cut crystal		SC-cut crystal	
			$\begin{aligned} & \pm 0.03 \mathrm{ppm} \text { over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \pm 0.05 \mathrm{ppm} \text { over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \pm 0.1 \mathrm{ppm} \text { over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 0.01 \text { ppm over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \pm 0.03 \mathrm{ppm} \text { over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \pm 0.05 \mathrm{ppm} \text { over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
			$\begin{aligned} & \pm 0.05 \mathrm{ppm} \text { over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \pm 0.1 \mathrm{ppm} \text { over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \pm 0.5 \mathrm{ppm} \text { over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 0.03 \text { ppm over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \pm 0.05 \mathrm{ppm} \text { over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \pm 0.1 \mathrm{ppm} \text { over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
	Aging		AT-cut: $\pm 0.1 \mathrm{ppm}$ typical first year. SC-cut: $\pm 0.05 \mathrm{ppm}$ typical first year.			
	Supply Voltage $\pm 5 \%$ Variation		$\pm 20 \mathrm{ppb}$ max.			
	Load $\pm 5 \%$ variation:		$\pm 20 \mathrm{ppb}$ max.			
	Warm-up time (at $+25^{\circ} \mathrm{C}$)		AT-cut: 3 minutes max. Within $\pm 0.5 \mathrm{ppm}$ of its reference frequency. SC-cut: 1 minute max. Within $\pm 0.1 \mathrm{ppm}$ of its reference frequency.			
		Freq. Deviation Range	AT-cut: $\pm 5 \mathrm{ppm}$ typical SC-cut: $\pm 0.7 \mathrm{ppm}$ typical			
		Control Voltage Range	0.5 V to 4.5 V			
		Transfer Function	Positive: Increasing control voltage increases output frequency.			
		Input Impedance	$100 \mathrm{~K} \Omega \mathrm{~min}$.	EFC Linearity	$\pm 10 \%$ max.	
Power	Power Dissipation (at $+25^{\circ} \mathrm{C}$)		Warm-up: 400 mA max. Steady-state: 200 mA max.			
Output	Wave From		HCMOS			
	Load (Fan out)		15 pF typical	Duty Cycle (measured at 50\% Vcc)		50\% $\pm 10 \%$
	Output Voltage Logic High ($\mathrm{V}_{\text {OH }}$)		+4.5 V min.	Output Voltage Logic Low (V0L)		+0.5 max.
	Rise and Fall Time		5 nS max. (measured at 20% * 80% of waveform)			
	Phase Noise	Offset	10 Hz	100 Hz	1 KHz	10 KHz
		10 MHz AT-cut XTAL	-110 dBc typ.	-135 dBc typ.	-150 dBc typ.	-155 dBc typ.
Storage Temperature			$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$			
Shock			2000 G 's, $0.3 \mathrm{~ms} 11 / 2$ sine			
Vibration			10 to $2000 \mathrm{~Hz} / 10 \mathrm{G}$'s			

MERCURY www.mercury-crystal.com
Taiwan: TEL (886)-2-2406-2779, FAX (886)-2-2496-0769, e-mail: sales-tw@mercury-crystal.com U.S.A.: TEL (1)-909-466-0427, FAX (1)-909-466-0762, e-mail: sales-us@mercury-crystal.com MERCURY

0C31T Test Circuit

OC31T Series Package Dimensions and Pin Connections:
Pin 1: Voltage Control EFC
Pin 4: RF Output

Pin 2: Reference Voltage Output Pin 5: Ground / Case
unit mm
Pin 3: Supply Voltage

Part Number Format and Example:

Example: 0C31T5A-10.000-0.1/-20+70							
0C31T5	A	-	10.000	-	0.1	/	$-20+70$
(1)	2	dash	3	Dash	4	slash	(5)
(1) 0C31T5: 0C31 series; "T" for CMOS Square wave; " 5 " for +5.0 V supply voltage 2: Crystal type. "A" for AT-cut crystal; "S" for SC-cut crystal (3) Frequency in MHz 4: Frequency stability in ppm 5: Operating temperature range in Celsius							

