OCXO (Oven Controlled Crystal Oscillators) +5.0 V OC189T5A; OC189T5S Series HCMOS Square Wave

Mercury 0C189T5 is $20.3 \times 20.3 \mathrm{~mm} 5$ pin solder sealed metal pacakge with $15.2 \times 15.2 \mathrm{~mm}$ pin-to-pin spacing high stability low aging OCXO. Besides standard AT cut crystal, users can also choose SC cut crystal for better performance. 50 ohm load sine wave output is available as 0C189E5 series.

General Specifications

Output Wave From			HCMOS square wave. Wave form code is "T"			
Frequency Range			$1.0 \mathrm{MHz} \sim 100.0 \mathrm{MHz}$			
Type of Crystal Cut Used			AT-cut. Use "A" for crystal code or SC-cut: use "S" for crystal code. Please refer to technical note TN031 for SC and AT-cut crystal comparison			
Supply Voltage (Vcc)			$+5.0 \mathrm{~V}_{\text {D.C }} \pm 5 \%$ (voltage code is " 5 ")			
Initial Calibration Tolerance			$\pm 0.5 \mathrm{ppm}$ typical at time of shipment; Vcon $=+2.5 \mathrm{~V}$, at $+25^{\circ} \mathrm{C}$			
	Operating Temperature Range (custom spec. on request)		AT-cut crystal		SC-cut crystal	
			$\begin{aligned} & \pm 0.03 \text { ppm over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \pm 0.05 \mathrm{ppm} \text { over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \pm 0.1 \mathrm{ppm} \text { over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 0.01 \mathrm{ppm} \text { over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \pm 0.03 \mathrm{ppm} \text { over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \pm 0.05 \mathrm{ppm} \text { over }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
			$\begin{aligned} & \pm 0.05 \mathrm{ppm} \text { over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \pm 0.1 \mathrm{ppm} \text { over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \pm 0.5 \mathrm{ppm} \text { over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 0.03 \mathrm{ppm} \text { over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \pm 0.05 \mathrm{ppm} \text { over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \pm 0.1 \mathrm{ppm} \text { over }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
	Aging		AT-cut: ± 0.1 ppm typical. First year. 10 MHz SC-cut: $\pm 0.05 \mathrm{ppm}$ typical. First year. 10 MHz			
	Supply Voltage $\pm 5 \%$ Variation		$\pm 20 \mathrm{ppb}$ max.			
	Load $\pm 5 \%$ variation		$\pm 20 \mathrm{ppb}$ max.			
	Warm-up time (at + $25^{\circ} \mathrm{C}$)		3 minutes max. Within $\pm 0.1 \mathrm{ppm}$ of its reference frequency.			
		Freq. Deviation Range	AT: ± 5 ppm typical SC: $\pm 0.7 \mathrm{ppm}$ typical			
		Control Voltage Range	$2.5 \mathrm{~V} \pm 2.0 \mathrm{~V}$			
		Transfer Function	Positive: Increasing control voltage increases output frequency.			
		Input Impedance	100Ω min.			
		EFC Linearity	$\pm 10 \%$ max.			
		Reference Voltage	+4.0 V			
Power	Power Dissipation (at $+25^{\circ} \mathrm{C}$)		Warm-up: 500 mA max. Steady-state: 200 mA max. at stead-state			
Output	Load (Fan out)		15 pF HCMOS max	Duty Cycle (measured at 50\%Vcc)		50\% $\pm 10 \%$
	Output Voltage Logic High ($\mathrm{V}_{\text {OH }}$)		+4.5 V min.	Output Voltage Logic Low (V $\mathrm{V}_{\text {OL }}$)		+0.5 max.
	Rise and Fall Time		$5 \mathrm{nS} \mathrm{max}$. . (measured at 20% * 80% of waveform)			
	Reference Voltage Output		$+4.0 \mathrm{~V}_{\text {D.C }} \pm 0.3 \mathrm{~V}_{\text {D.C. }}$ or custom.			
	Phase Noise	Offset	10 Hz	100 Hz	1 KHz	10 KHz
		10 MHz AT -cut XTAL	-110 dBc typical	-135 dBc typical	-150 dBc typical	-155 dBc typical
Storage Temperature			$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$			
Shock			2000 G's, $0.3 \mathrm{~ms} 11 / 2$ sine			

MERCURY www.mercury-crystal.com
Taiwan: TEL (886)-2-2406-2779, FAX (886)-2-2496-0769, e-mail: sales-tw@mercury-crystal.com U.S.A.: TEL (1)-909-466-0427, FAX (1)-909-466-0762, e-mail: sales-us@mercury-crystal.com MERCURY

OCXO (Oven Controlled Crystal	Oscillators)	+5.0 V	CmECS	MERCURY OC189T5A; OC189T5S

Vibration	10 to $2000 \mathrm{~Hz} / 10 \mathrm{G}$'s

OC189T5 Test Circuit

OC189T5 Series Package Dimensions and Pin Connections: unit mm

Pin 1: Supply Control Pin 4: Voltage Control EFC

Pin 2: RF Output Pin 3: Ground / Case Pin 5: Reference Voltage Output

Example: 0C189T5A-10.000-0.1/-20+70							
0C189T5	A	-	10.000	-	0.1	/	$-20+70$
(1)	2	dash	(3)	Dash	4	slash	(5)
(1): 0C189T5: OC189 series; "T" for CMOS Square wave; " 5 " for +5.0 V supply voltage 2: Crystal type. "A" for AT-cut crystal; "S" for SC-cut crystal 3: Frequency in MHz Frequency stability in ppm 5: Operating temperature range in Celsius							

